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Abstract. We study anomalies in the Coulomb blockade spectrum of a quantum dot formed in a silicon
nanowire. These anomalies are attributed to electrostatic interaction with charge traps in the device. A
simple model reproduces these anomalies accurately and we show how the capacitance matrices of the traps
can be obtained from the shape of the anomalies. From these capacitance matrices we deduce that the
traps are located near or inside the wire. Based on the occurrence of the anomalies in wires with different
doping levels we infer that most of the traps are arsenic dopant states. In some cases the anomalies are
accompanied by a random telegraph signal which allows time resolved monitoring of the occupation of the
trap. The spin of the trap states is determined via the Zeeman shift.

PACS. 73.23.Hk Coulomb blockade; single-electron tunneling – 73.20.Hb Impurity and defect levels; energy
states of adsorbed species – 75.75.+a Magnetic properties of nanostructures

1 Introduction

Single electron charges or spins are very appealing as logic
bits, either as ultimate classical bits or quantum bits if
coherence is used [1–4]. To read such bits, either quan-
tum point contacts or single electron transistors (SETs)
are used. SETs have indeed been used as very sensitive
electrometers for the (time-averaged) charge on a second
quantum dot for over a decade now [5,6]. More recently
SETs were used to monitor the time-resolved charge on
the second dot or to measure a current by electron count-
ing [7–10]. These experiments allow to measure extremely
low currents and to address its full counting statistics [11].

Such experiments are difficult because any device that
involves detection of few or single electron charges is sub-
ject to the dynamics of surrounding charge traps [12]. This
is particularly critical for metallic SETs [13]. For SETs
based on the very mature silicon CMOS technology the
control of this offset charges seems to be better [14].

These charge traps can be seen as quantum dots whose
presence or properties are not controlled. Typically they
consist of defects on atomic scale. Therefore their sizes are
much smaller than those of dots defined by lithography.
If their positions, although being random, can be limited
to some region of space, the charge traps are not nec-
essarily a nuisance but can useful. An example are flash
memories where the trend is to replace the lithographic
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floating gate by grown silicon nanocrystals inside the gate
oxide. These intentional charge traps have all the same
distance from channel and gate electrode and thus the
same dynamics [15,16]. Another example are dopants in
semiconductors. Efforts are made to control their indi-
vidual position in a silicon crystal [17]. Indeed, besides
the location, their properties are very uniform and solid
state quantum bits based on dopants in a silicon crystal
— individually addressed by gates and contacts — were
proposed as solid state quantum bits [1,2,18]. Silicon is in-
teresting as host material because the spin relaxation time
can be very long [19] compared to GaAs. The detection of
spins of individual traps in a silicon field effect transistor
has recently been reported using random telegraph noise
[20,21]. However, in this experiment the traps seem to be
in the oxide rather than in the silicon.

In this work, we use nanowire-based silicon transistors
operated as SETs at low temperature to detect the lo-
cation, spin and occupation number of individual charge
traps. The excellent quality of the silicon-oxide interface
and the precise control of the doping level are the ma-
jor benefits of silicon technology. This will allow us to at-
tribute the traps to As dopant states. Their capacitive cou-
pling to the SET induces anomalies in the otherwise very
regular periodic oscillations of the drain-source conduc-
tance G versus gate voltage Vg. We compare the data with
simulations obtained after solving the master equation for
the network formed by the main dot and the charge trap.



300 The European Physical Journal B

Fig. 1. Sample layout and electrical model. The insert shows a
top view after gate electrode etching (no spacers) obtained in a
scanning electron microscope. The main image shows a trans-
mission electron micrograph (TEM) of a type B sample along
the silicon nanowire (black). The wire shown here is thinner
than in the samples used for measurements. Light gray re-
gions are silicon oxide. The darker region in the center is the
polysilicon gate with Si3N4 spacers on both sides of it. Below, a
schematic energy diagram is drawn. The reduced doping level
below the spacers and the gate electrode creates a potential
barrier, in the middle of which a well is created by a positive
gate voltage [23]. Conductance through the barriers separating
the well from source and drain occurs by tunneling through a
chain of well connected dopants (schematically illustrated in
the right barrier) [24]. In more isolated dopants (left barrier)
the number of charges is quantized. Such traps are the main
concern of this paper. Their interaction with the quantum well
is mainly electrostatic. We describe it with the lumped network
superimposed to the TEM.

Not only the static time-averaged current is captured
by the analysis but also the switching noise which appears
near the degeneracy point in gate voltage where the trap
occupation number fluctuates.

Finally, a magnetic field was applied in order to probe
the spin polarization of the traps via their Zeeman shifts.
As expected from simple considerations [22], we observed
a majority of singly occupied traps.

2 Samples and set-up

Samples are produced on 200mm silicon on insulator
(SOI) wafers with 400 nm buried oxide and a boron sub-
strate doping of 1015 cm−3. The SOI film is locally thinned
down to approximately 20 nm and a 30 nm wide and
200nm long nanowire is etched from it. A 40 nm long
polysilicon control gate is deposited in the middle of the
wire (see Fig. 1). There are two types of samples: type A
samples with high doping level and type B samples with
low doping in the active regions. These different doping
levels necessitate slightly different fabrication processes.

Type A: the wires are uniformly doped with As, above
1019 cm−3. The gate oxide is only 4 nm thick to allow for
good gate control despite the high doping level. Type B:
the wires are first uniformly doped at a lower level (As,
1018 cm−3), then, after deposition of the gate electrode
and 50 nm-wide Si3N4 spacers on both sides of it, a sec-
ond implantation process increases the doping to approx-
imately 4× 1019 cm−3 in the uncovered regions while the
doping level stays low near the gate. In this layout the
gate oxide is 10 or 24nm thick, with a 2 or 4 nm thermal
oxide and 8 or 20 nm deposited oxide. Most measurements
are made on type B samples, and we use type A samples
mainly for comparison.

The measurements were performed in a dilution re-
frigerator with an electronic base temperature of approxi-
mately 150mK. We used a standard 2-wire low frequency
lock-in technique with low enough voltage excitation to
stay in the linear regime and a room temperature current
amplifier (gain 100MΩ). For time resolved measurements
a DC bias voltage was applied and current measured with
a 50MΩ current amplifier (bandwidth 10 kHz) followed by
a 33kHz AD conversion. For spin sensitive measurements
a superconducting magnet was used to apply an in-plane
magnetic field up to 16T.

3 Data

Figure 2 shows typical G(Vg) plots. At room tempera-
ture our samples behave as classical (albeit not optimized)
n-channel MOSFETs. Below approximately 20K they
turn into single-electron transistors with regularly spaced
Coulomb blockade resonances [23]. The period V+ = e/Cg

of these oscillations (e is the absolute value of the electron
charge) is determined by the gate capacitance Cg, which in
turn can be estimated from the gate/wire overlap and the
gate oxide thickness. For the sample with 4 nm (A), 10 nm
(B), 24 nm (B) gate oxide the peak spacing is respec-
tively 14mV±4 mV, 10.3mV±0.5mV, 15.3mV±0.8mV.
This corresponds to a gate capacitance of 11 aF, 15.5 aF,
10.5 aF. For type A samples the gate capacitance is in
good agreement with the simple planar capacitance esti-
mation. For type B samples where the gate oxide thick-
ness is of the same order as the dimensions of the wire, the
3-dimensional geometry has to be taken into account. The
gate capacitance of the type B samples is increased with
respect to the type A samples because the flanks of the
wire play a more important role. A 3-dimensional numer-
ical solution obtains a good agreement with the measured
capacitances [23].

The single particle level spacing is less than 0.2meV,
much smaller than the charging energy and comparable to
kT . The peak spacing statistics has already been measured
and compared to theory [25]. Here we focus on anoma-
lous regions where the conductance contrast is markedly
reduced and a phase shift of the Coulomb blockade os-
cillations occurs. They cause tails in the Gaussian peak-
spacing distribution. Such perturbations to the periodic
pattern are marked with circles in Figure 2. In the type B
samples with low doping, these perturbations occur only
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Fig. 2. Drain-source conductance versus gate voltage for 3 dif-
ferent samples. All samples have the same width and gate
length but the sample in the upper panel is of type A with
a 4 nm gate oxide, while the samples in the lower panels are
of type B, the gate oxide being 10 nm in the middle panel and
24 nm in the lower panel. The smooth field-effect characteris-
tics at room temperature (black lines) are replaced by Coulomb
blockade oscillations at base temperature (blue curves). The
period is determined by the surface area of the nanowire/gate
overlap. The Coulomb blockade oscillations in the upper panel
are irregular compared to the ones in the lower panels where
only a few anomalies perturb the otherwise very regular spec-
trum. These anomalous regions with reduced contrast and fluc-
tuating peak spacing are highlighted with circles. The anoma-
lies marked with bold circles are studied in detail in this work.

rarely (we observe typically 3 to 5 per sample). In the
unperturbed regions, the height of the Coulomb blockade
peaks shows long-range correlations. In the type A sam-
ples with high doping level the perturbations are more fre-
quent and as a result the whole spectrum looks irregular
(see top panel of Fig. 2). This suggests that the perturba-
tions are related to the doping.

In the measured stability diagram, i.e. the 2D plot of
conductance versus gate and bias voltages, the perturba-
tions are even more visible (see Fig. 3). In the perturbed
regions additional teeth appear in the Coulomb diamonds.

We develop a simple model based on a trap state lo-
cated in the vicinity of the quantum dot, and compare the
simulation with the experimental data.

Fig. 3. 2D-plots of the measured drain-source conductance
versus gate and drain voltages in an unperturbed, very peri-
odic gate voltage range (upper panel), and in an anomalous
region where a charge trap is observed (lower panel). White
areas correspond to Coulomb blockaded regions (no detectable
current). The lines inside the conducting regions do not cor-
respond to the excited states of the dot: the quantum dot is
diffusive and the mean single-particle level spacing is much
lower than the observed spacing inside the diamonds [25]. In
addition, the lines are identical in a long sequence of diamonds,
which should not be the case for excited states. Thus we rather
attribute these lines to additional conduction channels in the
drain barrier opening at higher bias (chains of well connected
dopants lying somewhat higher in energy than the drain Fermi
level). Compared to the lower panel of Figure 2, the anomalous
region has shifted by 50mV in gate voltage after thermal cy-
cling between base and room temperature. We do not observe
such shifts as long as the sample is kept cold.

4 Model

The quantum dot formed by the gate electrode in the mid-
dle of the wire is separated from the source and drain
reservoirs by a piece of silicon wire containing only a few
tens (type B) or hundreds (type A) of dopants. In the type
A samples these access regions extend from the border of
the gate electrode to the regions where the wire widens
(see Fig. 1) and its resistance becomes negligible. In the
type B samples only the parts of the wire below the spac-
ers contribute significantly to the access resistance and the
highly doped parts of the wire can be considered as part
of the reservoirs.

Electrons pass through these access regions by trans-
port via the dopant states1. As the dopants are distributed
randomly and the coupling between them depends expo-
nentially on their distance, the strength of this coupling is
distributed over a wide range. Therefore transport takes

1 Direct tunneling through a 50 nm thick barrier leads to
access resistances much higher than observed, even for barrier
heights of a few meV.
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place mainly through a percolation path formed by well
connected dopants [22] while other dopant states are only
weakly connected and their occupation is a good quan-
tum number (see Fig. 1). We attribute the anomalies in
the Coulomb blockade spectrum to the electrostatic inter-
action of the quantum dot with such a charge trap formed
by an isolated dopant site.

We model this with the lumped network shown in
Figure 1. Similar models have been considered in refer-
ences [26] and [27]. A small trap (t) is capacitively coupled
to source (s), drain (d), gate (g) and to the main dot (m).
We note Ci = Cs

i +Cd
i +Cg

i and Xi = Cs
i Vs+Cd

i Vd+Cg
i Vg

(i = m, t). After some calculation, the electrostatic energy
of the two dot system can be expressed as a function of
the charges Qm on the main dot and and Qt in the trap.

W (Qm, Qt) =
(Qm + βtQt + X)2

2C
︸ ︷︷ ︸

M(Qm,Qt)

+
(Qt + Xt)

2

2 (Ct + Cc)
︸ ︷︷ ︸

T (Qt)

(1)

where Cc is the capacitive coupling between dot and trap,
βt = Cc

Ct+Cc
, C = Cm + βtCt and X = Xm + βtXt. For

a small trap (Cm � Ct) these renormalizations are weak:
C ≈ Cm and X ≈ Xm. Note that the expression for W is
symmetric under exchange of main dot and trap. Expres-
sions M and T have different forms because we attributed
the interaction term entirely to M to ease further analysis.
W is plotted in the top panel of Figure 4.

We focus on the structure of the Coulomb blockade
conductance fixed by equation (1) and not on the exact
value on the conductance plateaus. Therefore we choose
as simple as possible the following parameters which are
necessary for the simulation but do not affect the structure
of the conductance diagram.

We suppose all transmission coefficients to be constant,
the ones connecting the main dot to source and drain be-
ing 1000 times higher than the ones connecting the trap to
the main dot and source or drain. Therefore electrons can
be added or removed from the trap, but their contribution
to the total current through the device is negligible. This
contrasts with models of stochastic Coulomb blockade [28]
or in-series quantum dots [29,30] where the current has to
pass through both dots.

In terms of kinetic energy, we describe the main dot
as metallic (negligible single-particle level spacing ∆, i.e.
∆ � kT ) and we consider only one non-degenerate energy
level for the trap. Its energy can be accounted for through
a gate-voltage offset in the parameter Xt. This parameter
also allows to correct for the unphysical electrostatic self-
energy when one electron is in the trap. In the presented
simulations we only compensate the self energy but do
not add a kinetic energy. In source and drain we suppose
a uniform density of states. We assume fast relaxation
of kinetic energy inside the dot and the reservoirs, i.e.
thermal distributions in the electrodes and the main dot,
even for nonzero bias voltage. With these assumptions,
the transition rates of an electron in the main dot to the
source or drain reservoirs or from the reservoirs to the
dot are proportional to the auto-convolution of the Fermi

Fig. 4. Numerical study of a trap coupled to the source and
to the main quantum dot, as sketched in Figure 1. Parame-
ters: effective temperature: T = 1K; main dot: Cg

m = 10 aF,
Cd

m = Cs
m = 11 aF; trap: Cg

t = 0.007 aF, Cs
t = 0.3 aF, Cd

t = 0,
Cc = 0.15 aF. The trap can either be empty or charged with
one electron. The upper panel shows the energy for the different
charge states at zero bias in function of gate voltage. The blue
parabolas are for empty trap, the black ones for occupied trap.
The thick blue and black lines indicate the ground state of the
main dot for respectively empty and occupied trap. The mid-
dle panel shows the self-consistent mean occupation number
of the trap, the lower panel the resulting conductance through
the dot. The effect of the charge trap is to shift the Coulomb
blockade diamonds of the main dot depending on the charge
in the trap. The dotted (dashed) lines indicate the position of
the diamonds when the trap is empty (occupied). This result
is in very good agreement with the experimental data shown
in the lower panel of Figure 3.

function. The transition rates from or towards the trap
are directly proportional to the Fermi function [31].

The statistical probability for each state (Qm, Qt) of
the system can now be calculated by solving the master
equation numerically and gives access to the mean current
through the system.

Results of such a numerical study are presented in Fig-
ure 4. The middle panel shows the mean occupation of the
trap. On a large scale, the trap becomes occupied with in-
creasing gate voltage. In the central region of the figure
however, whenever an electron is added onto the main dot,
the electron in the trap is repelled and only later it is re-
attracted by the gate electrode. Inversely, the trap charge
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repels the charges on the main dot and the Coulomb block-
ade structure of the main dot is shifted to higher gate volt-
age when the trap is occupied (see lower panel). The two
Coulomb blockade structures for unoccupied and occupied
trap are respectively indicated by dotted and dashed lines
in the middle and lower panel of Figure 4.

This explanation is illustrated in terms of energy in
the top panel of Figure 4, which shows the energies for the
different charge configurations. The crossings of the blue
(black) parabolas give the positions of the Coulomb block-
ade peaks for empty (occupied) trap. The shift between
the crossings of the black parabolas with respect to the
crossings of the blue parabolas and the shift of the dashed
lines with respect to the dotted lines are due to the term
βtQt in M(Qm, Qt). Knowing that one Coulomb blockade
oscillation corresponds to a change of e in βtQt + X , the
shift due to ∆Qt = e is

δVg = βtV+ (2)

where V+ is the Coulomb blockade peak spacing of the
main dot.

We will now determine the width of the anomaly in the
Coulomb blockade spectrum at low bias voltage. It is given
by the gate voltage range where the occupation of the trap
oscillates at zero bias. In the top panel of Figure 4 this is
the zone between the first and the last crossing of the thick
black line and the thick blue line. First we calculate ∆M ,
the difference of the ground state energies for empty and
occupied trap arising from the term M in equation (1).
Then we calculate the change in gate voltage necessary
for T (−e)− T (0) to exceed this difference.

∆M reaches its extreme values when, for one state
of the trap, the main dot is at a degeneracy point (the
kinks in the thick lines), where M = (e/2)2

2C . For the other
state of the trap, the main dot is then a fraction βt of a
Coulomb blockade period away from the degeneracy point
and M = e2(1/2−βt)

2

2C . The extrema of ∆M are therefore
± e2

2C βt(1 − βt).
The gate voltage dependence of term T is given by

αt = 1
−e

d
dVg

(T (−e)− T (0)) = Cg
t

Ct+Cc
. Note that αt is the

long-range gate voltage lever arm of the trap over several
Coulomb blockade oscillations, where the charge of the
main dot has to be considered as relaxed with the source
and drain Fermi levels. T (−e)− T (0) has to change from
+ e2

2C βt(1 − βt) to − e2

2C βt(1 − βt) in order to toggle the
trap definitively. Therefore the width ∆Vg of the anomaly
is given by eαt∆Vg = 2 e2

2C βt(1 − βt) or

∆Vg =
βt(1 − βt)

αt
αmV+ (3)

where αm = Cg

C with Cg = Cg
m + βtC

g
t is the gate-voltage

lever arm of the main dot.
We have identified αt = Cg

t
Ct+Cc

and βt = Cc
Ct+Cc

as pa-
rameters determining the structure of the trap signature.
Both do not depend on the absolute value of the trap’s
capacitances. Indeed, if one allows only 0 or 1 electron in

the trap, the absolute value of the trap capacitances en-
ters the problem only indirectly by slightly modifying the
capacitance matrix of the main dot and, in the limit of a
small trap, does not enter the problem at all. Therefore,
our model only contains 2 effective parameters for the trap
instead of 3 (Cg

t , Cs
t , Cc). All 3 parameters are only signif-

icant if the trap can accommodate 2 or more electrons. In
this case the spacing between the anomalies gives access
to the absolute values of the trap capacitances.

So far we have considered traps on the source side of
the dot. We will now describe how the signature depends
on the position of the trap with respect to the dot. If as in
the example of Figure 4 the trap is on the source side, the
zones of empty and occupied trap in the (Vg, Vd) plane are
aligned with the negative slope of the diamonds (see mid-
dle panel of Fig. 4). This is due to the fact that along a line
parallel to the negative slope of the diamonds the highest
occupied level in the dot stays at constant energy with
respect to the source Fermi level. As the trap is controlled
mainly by source and dot, its occupation stays constant
in this direction. The weak influence of the gate electrode
on the trap causes small deviations from this direction.
This can be seen in the middle panel Figure 4b: the limits
separating white (empty) and black (occupied) zones are
not exactly parallel to the diamond slopes. Due to this
almost perfect alignment, changes in the occupation num-
ber of the trap occur only at the positive slopes of the
diamonds. They cause the characteristic teeth of constant
width δVg to appear on the positive slope of the diamonds.
In the same way, the teeth appear on the negative slope
if the trap is on the drain side of the dot.

As a summary, Figure 5 illustrates the relation be-
tween the trap’s capacitance matrix and its signature. If
the teeth of constant width are visible at the positive slope
of the Coulomb blockade diamonds, the trap is on the
source side of the dot. If they are visible at the negative
slope, the trap is on the drain side. The width of the teeth
depends on βt, the width of the anomalous region essen-
tially on αt (for βt close to 1

2 , where the anomalies are
well visible).

5 Position and nature of the traps

As an illustration, from the lower panel of Figure 3 we infer
αt ≈ 0.015 and βt ≈ 0.3. These are the actual parameters
that have been chosen for the simulation in Figure 4 and
the lower panels of Figures 3 and 4 are indeed very similar.
As for all impurities we observed, αt is small. This is what
we expect for a trap inside the silicon wire. The coupling
to the gate electrode is much weaker than the coupling to
the main dot or the source electrode because the dielectric
constant of the oxide barrier (εSiO2 = 4) is much smaller
than that of bare silicon (εSi = 12), which, in addition, is
enhanced near the insulator–metal transition [32].

Traps located outside the wire can be ruled out. Traps
located deep inside the oxide can be excluded because
their transmissions would be too weak to observe statisti-
cal mixing of occupied and unoccupied trap states during
our acquisition time below 1 s. Similar devices including
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Fig. 5. Calculated trap signatures for different sets of param-
eters. (a) The trap is close to the source. (b) The coupling to
the gate electrode is reduced by a factor of 5. The signature
becomes wider. (c) The coupling to the source is reduced, the
coupling to the dot increased. (d) The trap is placed on the
drain side of the dot instead of the source side. (e) The cou-
pling to the dot is reduced, the coupling to the drain increased.

intentional silicon nanocrystals at the interface between
thermal oxide and deposited oxide have been studied in
views of memory applications [16,33]. The measured life-
time of charges in the nanocrystals exceeds 1 s by orders of
magnitude already at room temperature and at low tem-
perature gate voltages of approximately 5 V have to be
applied in order to toggle the charge in the nanocrystals.
Therefore the traps must be inside the Si wire or at its
interface with the oxide. But the interface traps are un-
likely. The used technology attains less than 1011 cm−2,
corresponding to a few units per sample. As they are dis-
tributed throughout the entire band gap it is very unlikely
to observe several of them in the small energy window
αt(Vg

max − Vg
min) ≈ 30meV that we scan in our mea-

surement. The most likely traps are therefore defects in
the silicon wire or As donor states. Given the volume of
the access regions under the spacers and the doping level
ND, there are approximately 70 donor states under the
spacers in devices of type B. We estimate the width of
the impurity band to be e2

ε0εrN
−1/3
D

≈ 150meV [22]. One

should therefore expect around 15 dopants in the energy
window. Typically we record 3 to 5 anomalies. Indeed we
do not expect to observe anomalies for all dopants because
the charge on well connected dopant sites is not quantized
and, according to our model, dopants very close to the
dot (βt ≈ 1) or to the reservoir (βt ≈ 0) cause very small
anomalies.

In the type A samples the doping level in the access
regions is more than 10 times higher than in the type B
samples. The whole Coulomb blockade spectrum should
therefore be anomalous. Indeed, the spectrum is much less
regular (see Fig. 2) than for the type B samples, es-
pecially for low gate voltage, but we cannot distinguish
signatures as clear as in the type B samples. This is
consistent because in the type A samples the mean dis-
tance between impurities is less than 3 nm and they are
too well connected for the charge on them to be well
quantized. In other words, the wire is very close to the
insulator–metal transition. Our doping level is in fact
already higher than the bulk critical As concentration
Nc = 8.6 × 1018 cm−3 [34,35].

We have deduced that the observed traps lie inside the
wire. The position of the trap along the wire can also be
determined. First we can distinguish on which side of the
dot the trap is: teeth on positive slope of the diamonds in-
dicate a trap on the source side, teeth on the negative slope
a trap on the drain side. Then the parameter βt gives the
ratio between the capacitances towards the main dot and
the source (or drain) electrode. As the dielectric constant
of the wire is much higher than the surrounding silicon
oxide, this ratio can be translated linearly to a position
in direction of the wire. In the example of Figure 3 with
βt ≈ 0.3 we would expect the impurity to be located 2

3 on
the way from the dot (edge of the gate electrode) to the
source reservoir (source side edge of the spacer).

6 Time-resolved occupation number

In the preceding sections we assumed charge traps with
changing mean occupation number to explain anomalies
in the mean conductance through a Coulomb blockaded
quantum dot. Yet the measurements of the mean current
have not allowed us to measure the occupation number
of the trap directly. But the currents through the main
dot differ for empty and occupied trap because the posi-
tion of the Coulomb blockade resonances is shifted, and at
the anomalies where the mean occupation number of the
trap is different from 0 and 1, the fluctuations of the oc-
cupation number should create a random telegraph signal
(RTS) [36,20,21,37] in the current through the main dot.

Near most of the trap signatures we do not observe
increased noise or only a small increase. Only rarely the
trap signatures are accompanied with a clear RTS signal.
Indeed, charge can be quantized in states with tunneling
rates up to the GHz range. Thus, with our measurement
in the kHz range we can only observe switching for traps
with exceptionally weak coupling while charges in traps
with stronger coupling are still sufficiently quantized to
produce clear signatures in the mean current.
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Fig. 6. Analysis of a trap signature with switching. Sample of
type B with 24 nm gate oxide. The width of the wire is 80 nm
instead of 30 nm. (a) A RTS trace taken at Vg = 500 mV,
Vd = −6mV. Light gray trace: raw data. Black trace: data
after compensation of the time constant τamp of the current
amplifier (I ′ = I + τamp

dI
dt

). Blue line: fitted signal. The detec-
tion time is approximately 30 µs. (b) Histograms of the times
spent in the weak current state (occupied trap, black) and the
−1 nA state (empty trap, blue). The time constants (averages
of these times) are 0.31 ms and 0.62 ms. The corresponding ex-
ponential distributions (straight lines) fit well the histograms.
(c) Current histogram at Vd = −6mV. The nonzero density
between the two current levels is due to the finite rise time.
The current for unoccupied trap is always higher than for oc-
cupied trap. (d) Time constants of the empty and occupied
levels in function of gate voltage and occupation number of
the trap.

An example where a clear RTS signal is observed is
given in Figure 6a. The distribution of the times spent
in the two states follows the exponential distribution ex-
pected for a RTS (see Fig. 6b).

The color plot of the current distribution in Figure 6c
shows the evolution of the two current levels (the darker
regions denote higher current probability) in function of
gate voltage. Above 380mV the two levels are very dif-
ferent. This difference is most likely due to electrostatic
interaction of the trap and the current path through the
barrier: depending on the state of the trap, the dopants
through which the main part of the current flows are well
or poorly aligned in energy. The fact that the current lev-
els never cross simplifies greatly the assignment of the high
and low current levels to the states of the trap. The high
current trace being most likely at low gate voltage and the
low current trace being most likely at high gate voltage
allows to attribute the high current to empty trap and the
low current to occupied trap.

The time constants of the empty and occupied state
are plotted in Figure 6d. In accordance with panel (c),
the time constant for the empty trap decreases with gate
voltage while the time constant for the occupied trap in-
creases. Superimposed with this slow change there are

Fig. 7. Comparison of measured occupation number and sim-
ulation. Same trap as in Figure 6. (a) Mean differential conduc-
tance obtained by numerical derivation of the mean current.
(b) Occupation of the trap obtained from the duty cycle of
the RTS signal. Regions where no clear RTS could be detected
are left white. (c) and (d) Simulation with the following pa-
rameters: main dot: Cg

m = 13 aF, Cs
m = 10 aF, Cd

m = 16 aF;
trap: Cg

t = 0.013 aF, Cs
t = 0.10 aF, Cd

t = 0, Cc = 0.16 aF.
In units of the drain-dot barrier transmission, the source-dot
barrier transmission is 10 for empty trap and 1

10
for occupied

trap, the source-trap barrier transmission 1
1000

and the trap-
dot barrier transmission 1

3000
.

oscillations with a period of 12mV, the peak spacing of
the main dot. The observed time constants are bounded
below by the detection time of 30µs and time constants
close to the detection time are overestimated [38]. How-
ever, our observation of slow changes and oscillation of
the time constants are not affected by this limitation. We
concentrate now on the mean occupation number given
by τoccupied

τoccupied+τempty
. This ratio is unbiased even if the time

constants are overestimated [38]. It goes from 0 at low
gate voltage to 1 at high gate voltage and strongly os-
cillates near Vg = 450mV (see Fig. 6d). As explained in
Section 4 for the case of low bias, this oscillation is due
to the discrete charge on the main dot which cycles the
trap several times between empty and occupied state. It
is not observed in RTS in larger devices without Coulomb
blockade [36]. In Figure 7 the occupation probability for
different bias voltages is compared with simulation. As in
Figure 4, the oscillations are aligned parallel to the nega-
tive slopes of the Coulomb blockade diamonds indicating
that the trap is on the source side of the dot.

RTS (i.e. current through the trap) only occurs when
the trap is in the bias window. For large gate and bias
voltage excursions where the charging energy of the main
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dot is negligible, the main dot can be considered as part of
the drain reservoir. The zone where the trap is in the bias
window is then delimited by slopes Cg

t
Ct

and −Cg
t

Cc
(indicated

by straight lines in Fig. 7), just as for a single quantum
dot. These slopes give another more straightforward access
to the parameters αt and βt. In accordance with the shape
of the teeth in panel (a) we get αt = 0.05 and βt = 0.6.

The mean occupation of the trap is higher for positive
drain voltage than for negative drain voltage, indicating a
higher transmission rate of the trap towards source than
towards the main dot.

In Figures 7c and 7d we try to reproduce panels (a)
and (b). For this simulation we reduce by a factor of 100
the transmission of the source barrier of the main dot
when the trap is occupied. This reproduces the lines of
reduced differential conductance at positive drain voltage
(compare Figs. 7a and 7c). In the simulation the oscilla-
tions of the trap occupation decay more rapidly with bias
voltage than in the measurement. This could be related
to our approximation of a thermal distribution of kinetic
energies in the main dot, which is certainly not accurate
at high bias voltage.

Charge traps are generally believed to be not only re-
sponsible for RTS noise but also for 1/f noise in SETs [12]
and decoherence [39]. These interpretations imply a large
number of traps with small influence on the device (in
our model βt ≈ 0). Such traps could be dopants in the
reservoirs or the substrate.

7 Spin

Under magnetic field, via the Zeeman energy, the spin of
the trap state leads to a gate voltage shift of the trap
signature. It is given by:

eαt
∂Vg

∂B
= gµB∆Sz (4)

where µB is the Bohr magneton and ∆Sz the change in
spin quantum number of the trap state in direction of the
magnetic field when an electron is added to the trap. It can
take the values ± 1

2 . If there are already electrons in the
trap higher changes are also possible, but they imply spin
flips and such processes are expected to be very slow [40].
The Landé factor g for impurities in Si and SiO2 has been
measured in [41]. The observed renormalizations are be-
yond the precision of our measurements, therefore we take
g = 2. The gate-voltage lever-arm of the trap states αt is
very weak as we have shown above. The Zeeman shifts
should therefore be strong.

Indeed, the magnetic field clearly shifts the trap signa-
ture in Figure 8 to lower gate voltage. In order to identify
the shift as the Zeeman effect, we compare it quantita-
tively with the prediction of our model. The shift of the
resonances due to the trap is half the peak spacing, thus
βt = 1

2 (see Eq. (2)). The lever arm for the main dot
is for this gate voltage αm = 0.26, and the width of the
trap signature varies from 2.5 periods at 0 T to 1.5 pe-
riods at 16T. This implies a gate-voltage lever arm for

Fig. 8. Shift of a trap signature with magnetic field. The dot-
ted line indicates the Zeeman shift expected for a trap state
being occupied by a first electron. It depends on the gate-
voltage lever-arm which in turn is determined by the width
of the signature. This prediction of the Zeeman shift follows
exactly the observed shift.

the trap of αt = 0.026...0.043 (see Eq. (3)) which we in-
terpolate as a linear function of magnetic field. The dot-
ted line in Figure 8 is obtained if we put this lever arm
and Sz = − 1

2 in equation (4). It is in very good agree-
ment with the measured shift and confirms our model.
The increase of the lever arm with magnetic field could be
explained as follows. In the access regions the nanowire
is close to the metal-insulator transition and the dopant
states strongly increase the dielectric constant [34]. Under
magnetic field the localization length could be reduced due
to shrinking of orbital states [22] or due to misalignment
of dopant states in resonance at zero field. With the local-
ization length the capacitive coupling towards the main
dot and the reservoir decreases while the geometric gate
capacitance remains unaffected.

We observe such Zeeman shifts in the majority of our
samples. In most cases the trap signature shifts to lower
gate voltage as in Figure 8. This is what we expect for iso-
lated traps occupied with one electron. When a trap state
is occupied with a second electron it has to occupy the en-
ergetically less favorable state whose energy is increased
by the Zeeman effect. This leads to a shift towards higher
gate voltage under magnetic field. Although isolated As-
donor sites in Si can only be occupied by one2 electron due
to Coulomb repulsion, clusters of two donors could contain
two or more electrons [42]. For not too high doping levels
however, clusters should be rare. Accordingly we observe
much less shifts to higher than to lower gate voltage. In
devices based on similar technology Xiao et al. observed
that all shifts occurred to higher gate voltage [20,21] indi-
cating doubly occupied traps. With precise measurements
of the Landé factor they located the traps inside the oxide.
This difference also supports that the traps in our device
are not located in the oxide but inside the silicon wire.

2 Arsenic donors can be populated with 2 electrons but the
second electron is so weakly bound that in the scale of our
devices it can be considered as delocalized. See for example
reference [22].
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8 Outlook

Dopant states in silicon could provide very scalable solid
state quantum bits, based on charge, electron spin or nu-
clear spin. But it is still very difficult to control their po-
sition individually. On the other hand, with several gate
electrodes one could imagine to select suitable dopants
out of a large number of randomly distributed dopants.
In this context we have presented how the capacitance
matrix of charge traps near a small silicon single-electron
transistor can be determined and we have shown how the
gate-voltage dependence of the occupation is related to
the spin of the trap state and that the charge in these
traps can be read out. These charge traps are attributed
to arsenic dopant states. At a doping level of 1018 cm−3 we
observe several well isolated dopant states per device as
well as percolation paths of well connected dopants linking
the main quantum dot to the reservoirs. In similar geome-
tries with multiple gate electrodes the coupling between
the dopants could be tuned by changing their alignment
in energy with the well connected dopants. Such randomly
distributed dopants are probably more suited for electron
spin quantum bits than for charge quantum bits where two
dopant sites with small distance are necessary. In this per-
spective we are working on measurement of the relaxation
time of the electron spin in the observed traps. Together
with the excellent stability in time as well as its full com-
patibility with CMOS technology our system could be a
good basis for scalable quantum bits.

This work was partially supported by the European Com-
mission through the Network of Excellence SINANO (IST-
506844).
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